Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology.

نویسنده

  • Zhong Lin Wang
چکیده

Nanobelt is a quasi-one-dimensional structurally controlled nanomaterial that has well-defined chemical composition, crystallographic structure, and surfaces (e.g., growth direction, top/bottom surface, and side surfaces). This article reviews the nanobelt family of functional oxides, including ZnO, SnO2, In2O3, Ga2O3, CdO, and PbO2 and the relevant hierarchical and complex nanorods and nanowires that have been synthesized by a solid-vapor process. The nanobelts are single crystalline and dislocation free, and their surfaces are atomically flat. The oxides are semiconductors that have been used for fabrication of nanosize functional devices of key importance for nanosystems and biotechnology, such as field-effect transistors, gas sensors, nanoresonators, and nanocantilevers. The structurally controlled ZnO nanobelts that exhibit piezoelectric properties are also reviewed. By controlling growth kinetics, we show the success of growing nanobelt-based novel structures whose surfaces are dominated by the polarized +-(0001) facets. Owing to the positive and negative ionic charges on the zinc- and oxygen-terminated +-(0001) surfaces, respectively, a spontaneous polarization is induced across the nanobelt thickness. As a result, helical nanostructures and nanorings are formed by rolling up single-crystal nanobelts; this phenomenon is a consequence of minimizing the total energy contributed by spontaneous polarization and elasticity. The polar surface-dominated ZnO nanobelts are likely to be an ideal system for understanding piezoelectricity and polarization-induced ferroelectricity at nano-scale and they could have applications as one-dimensional nano-scale sensors, transducers, and resonators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices{

This review focuses on the growth, properties and novel applications of aligned arrays of ZnO nanowires (NWs) and nanobelts (NBs) for nanogenerators and nano-piezotronics. Owing to the semiconducting and piezoelectric dual properties of ZnO crystals, novel applications are introduced using aligned ZnO NWs, such as nanogenerators. These unique properties and applications will have profound impac...

متن کامل

Zinc oxide nanostructures: growth, properties and applications

Zinc oxide is a unique material that exhibits semiconducting and piezoelectric dual properties. Using a solid–vapour phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobelts, nanowires and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of ...

متن کامل

Nanohelixes/nanosprings and seamless nanorings

semiconducting oxides in 20011, research into functional oxide-based, one-dimensional nanostructures has rapidly expanded because of their unique and novel applications in optics, optoelectronics, catalysis, and piezoelectricity. Semiconducting oxide nanobelts are a unique group of quasi-one-dimensional nanomaterials, which have been systematically studied for a wide range of materials with dis...

متن کامل

Current advancements in applications of chitosan based nano-metal oxides as food preservative materials

Objective(s): A remarkable growing effort has been conducted by several researchers to fabricate food packaging materials which are able to protect foodstuffs and enhance their shelf-life from food-borne pathogens and fungal attack which causes great damage to the food industries. Recent studies has focused on the potential applications of nano-metal oxides in food packaging area. Method...

متن کامل

A Review of Recent Advances in Iron Oxide Nanoparticles as a Magnetic Agent in Cancer Diagnosis and Treatment

Aims In recent years, iron oxide nanoparticles have shown incredible possibilities in biomedical applications due to their non-toxic function in biological systems. Furthermore, these nanoparticles have multifunctional applications, such as antibacterial, antifungal, and anticancer effects in medicine due to their magnetic properties.  Methods & Materials In this article, 49 articles related t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annual review of physical chemistry

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2004